Benutzer: Gast  Login
Titel:

More trustworthy Bayesian optimization of materials properties by adding human into the loop

Dokumenttyp:
Konferenzbeitrag
Art des Konferenzbeitrags:
Poster
Autor(en):
Armi Tiihonen ~Armi_Tiihonen , Louis Filstroff, Petrus Mikkola, Emma Lehto, Samuel Kaski, Milica Todorović, Patrick Rinke
Abstract:
Bayesian optimization (BO) is a popular sequential machine learning optimization strategy for black-box functions. BO has proven to be an effective approach for guiding sample-efficient exploration of materials domains and is increasingly being used in automated materials optimization set-ups. However, when exploring novel materials, sample quality may vary unexpectedly, which, in the worst case, can invalidate the optimization procedure if undetected. This limits the use of highly- automa...     »
Stichworte:
Bayesian optimization, materials optimization, human expert, perovskites, accelerated design
Kongress- / Buchtitel:
36th Conference on Neural Information Processing Systems (NeurIPS 2022) AI4Mat 2022 Poster, NeurIPS 2022 Workshop AI4Mat
Kongress / Zusatzinformationen:
New Orleans, United States, Nov 2022-11
Jahr:
2022
Jahr / Monat:
2022-11
 BibTeX