Benutzer: Gast  Login
Titel:

Machine learning sparse tight-binding parameters for defects

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Schattauer, Christoph; Todorović, Milica; Ghosh, Kunal; Rinke, Patrick; Libisch, Florian
Abstract:
We employ machine learning to derive tight-binding parametrizations for the electronic structure of defects. We test several machine learning methods that map the atomic and electronic structure of a defect onto a sparse tight-binding parameterization. Since Multi-layer perceptrons (i.e., feed-forward neural networks) perform best we adopt them for our further investigations. We demonstrate the accuracy of our parameterizations for a range of important electronic structure properties such as ban...     »
Zeitschriftentitel:
npj Computational Materials 2022-05
Jahr:
2022
Band / Volume:
8
Heft / Issue:
1
Volltext / DOI:
doi:10.1038/s41524-022-00791-x
Verlag / Institution:
Springer Science and Business Media LLC
E-ISSN:
2057-3960
Publikationsdatum:
20.05.2022
 BibTeX