Benutzer: Gast  Login
Titel:

Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Golze, Dorothea; Hirvensalo, Markus; Hernández-León, Patricia; Aarva, Anja; Etula, Jarkko; Susi, Toma; Rinke, Patrick; Laurila, Tomi; Caro, Miguel A.
Abstract:
We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core–electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with exp...     »
Zeitschriftentitel:
Chemistry of Materials 2022-07
Jahr:
2022
Band / Volume:
34
Heft / Issue:
14
Seitenangaben Beitrag:
6240-6254
Volltext / DOI:
doi:10.1021/acs.chemmater.1c04279
Verlag / Institution:
American Chemical Society (ACS)
E-ISSN:
0897-47561520-5002
Publikationsdatum:
13.07.2022
 BibTeX