Benutzer: Gast  Login
Titel:

On universal inference in Gaussian mixture models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Shi, Hongjian; Drton, Mathias
Abstract:
Recent work on game-theoretic statistics and safe anytime-valid inference (SAVI) provides new tools for statistical inference without assuming any regularity conditions. In particular, the framework of universal inference proposed by Wasserman, Ramdas, and Balakrishnan (2020) offers new solutions by modifying the likelihood ratio test in a data-splitting scheme. In this paper, we study the performance of the resulting split likelihood ratio test under Gaussian mixture models, which are canonical...     »
Dewey Dezimalklassifikation:
510 Mathematik
Zeitschriftentitel:
Preprint
Jahr:
2024
Sprache:
en
Volltext / DOI:
doi:10.48550/ARXIV.2407.19361
Verlag / Institution:
arXiv
Status:
Preprint / submitted
Publikationsdatum:
28.07.2024
Semester:
SS 24
TUM Einrichtung:
Lehrstuhl für Mathematische Statistik
Format:
Text
 BibTeX