Benutzer: Gast  Login
Titel:

Bias in word embeddings

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Papakyriakopoulos, Orestis; Hegelich, Simon; Serrano, Juan Carlos Medina; Marco, Fabienne
Seitenangaben Beitrag:
446-457
Abstract:
Word embeddings are a widely used set of natural language processing techniques that map words to vectors of real numbers. These vectors are used to improve the quality of generative and predictive models. Recent studies demonstrate that word embeddings contain and amplify biases present in data, such as stereotypes and prejudice. In this study, we provide a complete overview of bias in word embeddings. We develop a new technique for bias detection for gendered languages and use it to compare bi...     »
Kongress- / Buchtitel:
FAT* '20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
Kongress / Zusatzinformationen:
FAccT: Conference on Fairness, Accountability, and Transparency (2020)
Datum der Konferenz:
27.-30.01.2020
Verlag / Institution:
Association for Computing Machinery
Verlagsort:
New York, NY, U.S.A.
Publikationsdatum:
27.01.2020
Jahr:
2020
Print-ISBN:
978-1-4503-6936-7
Sprache:
en
Volltext / DOI:
doi:10.1145/3351095.3372843
WWW:
https://dl.acm.org/doi/abs/10.1145/3351095.3372843
 BibTeX