Benutzer: Gast  Login
Titel:

Machine learning-based approach reveals essential features for simplified TSPO PET quantification in ischemic stroke patients.

Dokumenttyp:
Journal Article
Autor(en):
Zatcepin, Artem; Kopczak, Anna; Holzgreve, Adrien; Hein, Sandra; Schindler, Andreas; Duering, Marco; Kaiser, Lena; Lindner, Simon; Schidlowski, Martin; Bartenstein, Peter; Albert, Nathalie; Brendel, Matthias; Ziegler, Sibylle I
Abstract:
INTRODUCTION: Neuroinflammation evaluation after acute ischemic stroke is a promising option for selecting an appropriate post-stroke treatment strategy. To assess neuroinflammation in vivo, translocator protein PET (TSPO PET) can be used. However, the gold standard TSPO PET quantification method includes a 90 min scan and continuous arterial blood sampling, which is challenging to perform on a routine basis. In this work, we determine what information is required for a simplified quantification...     »
Zeitschriftentitel:
Z Med Phys
Jahr:
2024
Band / Volume:
34
Heft / Issue:
2
Seitenangaben Beitrag:
218-230
Volltext / DOI:
doi:10.1016/j.zemedi.2022.11.008
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36682921
Print-ISSN:
0939-3889
TUM Einrichtung:
657; Klinik und Poliklinik für Nuklearmedizin (Prof. Weber)
 BibTeX