User: Guest  Login
Title:

Out-of-distribution detection with in-distribution voting using the medical example of chest x-ray classification.

Document type:
Journal Article
Author(s):
Wollek, Alessandro; Willem, Theresa; Ingrisch, Michael; Sabel, Bastian; Lasser, Tobias
Abstract:
BACKGROUND: Deep learning models are being applied to more and more use cases with astonishing success stories, but how do they perform in the real world? Models are typically tested on specific cleaned data sets, but when deployed in the real world, the model will encounter unexpected, out-of-distribution (OOD) data. PURPOSE: To investigate the impact of OOD radiographs on existing chest x-ray classification models and to increase their robustness against OOD data. METHODS: The study employed t...     »
Journal title abbreviation:
Med Phys
Year:
2024
Journal volume:
51
Journal issue:
4
Pages contribution:
2721-2732
Fulltext / DOI:
doi:10.1002/mp.16790
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37831587
Print-ISSN:
0094-2405
TUM Institution:
595; Institut für Geschichte und Ethik der Medizin (Prof. Buyx)
 BibTeX