User: Guest  Login
Title:

Challenging Current Semi-supervised Anomaly Segmentation Methods for Brain MRI

Document type:
Proceedings Paper
Author(s):
Meissen, Felix; Kaissis, Georgios; Rueckert, Daniel
Abstract:
In this work, we tackle the problem of Semi-Supervised Anomaly Segmentation (SAS) in Magnetic Resonance Images (MRI) of the brain, which is the task of automatically identifying pathologies in brain images. Our work challenges the effectiveness of current Machine Learning (ML) approaches in this application domain by showing that thresholding Fluid-attenuated inversion recovery (FLAIR) MR scans provides better anomaly segmentation maps than several different ML-based anomaly detection models. Sp...     »
Journal title abbreviation:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Year:
2022
Journal volume:
12962
Pages contribution:
63-74
Fulltext / DOI:
doi:10.1007/978-3-031-08999-2_5
Print-ISSN:
0302-9743
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX