User: Guest  Login
Title:

Video Summarization Through Reinforcement Learning With a 3D Spatio-Temporal U-Net.

Document type:
Journal Article
Author(s):
Liu, Tianrui; Meng, Qingjie; Huang, Jun-Jie; Vlontzos, Athanasios; Rueckert, Daniel; Kainz, Bernhard
Abstract:
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently encode spatio-temporal information of the input videos for downstream reinforcement learning (RL). An RL agent learns from spatio-temporal latent score...     »
Journal title abbreviation:
IEEE Trans Image Process
Year:
2022
Journal volume:
31
Pages contribution:
1573-1586
Fulltext / DOI:
doi:10.1109/TIP.2022.3143699
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/35073266
Print-ISSN:
1057-7149
TUM Institution:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX