Wang, Yi; Ait Ali Braham, Nassim; Albrecht, Conrad M; Xiong, Zhitong; Liu, Chenying; Zhu, Xiaoxiang
Institutionszugehörigkeit:
TUM
Herausgeber:
TUM
Enddatum der Datenerzeugung:
28.02.2023
Fachgebiet:
DAT Datenverarbeitung, Informatik; GEO Geowissenschaften
Quellen der Daten:
Abbildungen von Objekten / image of objects
Datentyp:
Bilder / images
Methode der Datenerhebung:
automatic download, image preparation and processing using Google Earth Engine and Python
Beschreibung:
The SSL4EO-S12 dataset is a large-scale dataset for unsupervised pre-training in Earth observation. The dataset consists of unlabeled patch triplets (Sentinel-1 dual-pol SAR, Sentinel-2 top-of-atmosphere multispectral, Sentinel-2 surface reflectance multispectral) from 251079 locations across the globe. Each patch covers an area of 2640mx2640m and includes four seasonal time stamps. The compressed dataset is provided in normalized 8-bit GeoTiff format, with each band being one single file. Details see https://github.com/zhu-xlab/SSL4EO-S12
Links:
This is a compressed version (Sentinel-2 8-bit, Sentinel-1 8-bit) of the data. See download link under " Technical remarks"
The original version (Sentinel-2 16-bit, Sentinel-1 32-bit) can be found under: 10.14459/2022mp1660427.001