Benutzer: Gast  Login
Titel:

NISF: Neural Implicit Segmentation Functions

Dokumenttyp:
Proceedings Paper
Autor(en):
Stolt-Anso, Nil; McGinnis, Julian; Pan, Jiazhen; Hammernik, Kerstin; Rueckert, Daniel
Abstract:
Segmentation of anatomical shapes from medical images has taken an important role in the automation of clinical measurements. While typical deep-learning segmentation approaches are performed on discrete voxels, the underlying objects being analysed exist in a real-valued continuous space. Approaches that rely on convolutional neural networks (CNNs) are limited to grid-like inputs and not easily applicable to sparse or partial measurements. We propose a novel family of image segmentation models...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14223
Seitenangaben Beitrag:
734-744
Volltext / DOI:
doi:10.1007/978-3-031-43901-8_70
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX