Benutzer: Gast  Login
Titel:

Anatomy-Driven Pathology Detection on Chest X-rays

Dokumenttyp:
Proceedings Paper
Autor(en):
Mueller, Philip; Meissen, Felix; Brandt, Johannes; Kaissis, Georgios; Rueckert, Daniel
Abstract:
Pathology detection and delineation enables the automatic interpretation of medical scans such as chest X-rays while providing a high level of explainability to support radiologists in making informed decisions. However, annotating pathology bounding boxes is a time-consuming task such that large public datasets for this purpose are scarce. Current approaches thus use weakly supervised object detection to learn the (rough) localization of pathologies from image-level annotations, which is howeve...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2023
Band / Volume:
14220
Seitenangaben Beitrag:
57-66
Volltext / DOI:
doi:10.1007/978-3-031-43907-0_6
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX