Benutzer: Gast  Login
Titel:

An Overview of Affective Speech Synthesis and Conversion in the Deep Learning Era

Dokumenttyp:
Article
Autor(en):
Triantafyllopoulos, Andreas; Schuller, Bjorn W.; Iymen, Gokce; Sezgin, Metin; He, Xiangheng; Yang, Zijiang; Tzirakis, Panagiotis; Liu, Shuo; Mertes, Silvan; Andre, Elisabeth; Fu, Ruibo; Tao, Jianhua
Abstract:
Speech is the fundamental mode of human communication, and its synthesis has long been a core priority in human-computer interaction research. In recent years, machines have managed to master the art of generating speech that is understandable by humans. However, the linguistic content of an utterance encompasses only a part of its meaning. Affect, or expressivity, has the capacity to turn speech into a medium capable of conveying intimate thoughts, feelings, and emotions-aspects that are essent...     »
Zeitschriftentitel:
Proc. IEEE
Jahr:
2023
Band / Volume:
111
Heft / Issue:
10
Seitenangaben Beitrag:
1355-1381
Volltext / DOI:
doi:10.1109/JPROC.2023.3250266
Print-ISSN:
0018-9219
TUM Einrichtung:
Lehrstuhl für Health Informatics (Prof. Schuller)
 BibTeX