mediaTUM
Universitätsbibliothek
Technische Universität München
User: Guest
Login
de
en
mediaTUM Content
University Bibliography
2024
(5317)
2023
(7956)
Schools und Fakultäten
(7160)
Medizin
(842)
Else Kröner-Fresenius-Zentrum für Ernährungsmedizin - Klinik für Ernährungsmedizin
(32)
Institut für Allgemeine Pathologie und Pathologische Anatomie
(101)
Institut für Allgemeinmedizin (keine SAP-Zuordnung!)
(30)
Institut für Arbeitsmedizin - LMU
Institut für Biologische Bildgebung
(1)
Institut für Diabetesforschung
Institut für Experimentelle Onkologie und Therapieforschung
(14)
Institut für Geschichte und Ethik der Medizin
(67)
Institut für Humangenetik
(105)
Institut für Klinische Chemie und Pathobiochemie
(28)
Institut für Medizinische Mikrobiologie, Immunologie und Hygiene
(33)
Institut für Medizinische Statistik und Epidemiologie
(102)
Institut für Molekulare Immunologie
(10)
Institut für Molekulare Onkologie und Funktionelle Genomik
(26)
Institut für Neurowissenschaften
(6)
Institut für Pharmakologie und Toxikologie
(6)
Institut für Radiologie
(304)
Institut für Rechtsmedizin - LMU
Institut für Strahlenbiologie
(1)
Institut für Toxikologie und Umwelthygiene
(13)
Institut für Virologie
(23)
Institut für Zellbiologie des Nervensystems
(19)
Molekulare Allergologie
(23)
Sport- und Gesundheitswissenschaften
(466)
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit
(116)
TUM School of Computation, Information and Technology
(1442)
TUM School of Engineering and Design
(2252)
TUM School of Life Sciences
(895)
TUM School of Management
(261)
TUM School of Natural Sciences
(396)
TUM School of Social Sciences and Technology
(500)
Integrated Research Centers
(355)
Zentrale Einrichtungen
(441)
2022
(8729)
2021
(8938)
2020
(8193)
2019
(8865)
2018
(8662)
2017
(8686)
2016
(8831)
2015
(8220)
2014
(7148)
2013
(6755)
2012
(5773)
2011
(5563)
2010
(5427)
2009
(4595)
2008
(4109)
1989 - 2007
Electronic Examination Papers
Open Access Publikationen
Research Data
TUM.University Press
Collections
Projects
Institutions
mediaTUM Gesamtbestand
Hochschulbibliographie
2023
Schools und Fakultäten
Medizin
Back
Back to start of result list
Permanent link for displayed object
Title:
Prognostic Value of Machine Learning-based Time-to-Event Analysis Using Coronary CT Angiography in Patients with Suspected Coronary Artery Disease.
Document type:
Journal Article
Author(s):
Bauer, Maximilian J; Nano, Nejva; Adolf, Rafael; Will, Albrecht; Hendrich, Eva; Martinoff, Stefan A; Hadamitzky, Martin
Abstract:
PURPOSE: To assess the long-term prognostic value of a machine learning (ML) approach in time-to-event analyses incorporating coronary CT angiography (CCTA)-derived and clinical parameters in patients with suspected coronary artery disease. MATERIALS AND METHODS: The retrospective analysis included patients with suspected coronary artery disease who underwent CCTA between October 2004 and December 2017. Major adverse cardiovascular events were defined as the composite of all-cause death, myocardial infarction, unstable angina, or late revascularization (>90 days after index scan). Clinical and CCTA-derived parameters were assessed as predictors of major adverse cardiovascular events and incorporated into two models: a Cox proportional hazards model with recursive feature elimination and an ML model based on random survival forests. Both models were trained and validated by employing repeated nested cross-validation. Harrell concordance index (C-index) was used to assess the predictive power. RESULTS: A total of 5457 patients (mean age, 61 years ± 11 [SD]; 3648 male patients) were evaluated. The predictive power of the ML model (C-index, 0.74; 95% CI: 0.71, 0.76) was significantly higher than the Cox model (C-index, 0.71; 95% CI: 0.68, 0.74; P = .02). The ML model also outperformed the segment stenosis score (C-index, 0.69; 95% CI: 0.66, 0.72; P < .001), which was the best performing CCTA-derived parameter, and patient age (C-index, 0.66; 95% CI: 0.63, 0.69; P < .001), the best performing clinical parameter. CONCLUSION: An ML model for time-to-event analysis based on random survival forests had higher performance in predicting major adverse cardiovascular events compared with established clinical or CCTA-derived metrics and a conventional Cox model.Keywords: Machine Learning, CT Angiography, Cardiac, Arteries, Heart, Arteriosclerosis, Coronary Artery DiseaseSupplemental material is available for this article.© RSNA, 2023.
Journal title abbreviation:
Radiol Cardiothorac Imaging
Year:
2023
Journal volume:
5
Journal issue:
2
Fulltext / DOI:
doi:10.1148/ryct.220107
Pubmed ID:
http://view.ncbi.nlm.nih.gov/pubmed/37124636
TUM Institution:
Institut für Radiologie und Nuklearmedizin
BibTeX
Occurrences:
mediaTUM Gesamtbestand
Einrichtungen
Schools
TUM School of Medicine and Health
Departments
Clinical Medicine
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
Institut für Radiologie und Nuklearmedizin
2023
mediaTUM Gesamtbestand
Hochschulbibliographie
2023
Schools und Fakultäten
Medizin
Institut für Radiologie