mediaTUM
Universitätsbibliothek
Technische Universität München
Benutzer: Gast
Login
de
en
mediaTUM Gesamtbestand
Hochschulbibliographie
2024
(4903)
2023
(7938)
Schools und Fakultäten
(7141)
Medizin
(839)
Sport- und Gesundheitswissenschaften
(465)
TUM Campus Straubing für Biotechnologie und Nachhaltigkeit
(113)
TUM School of Computation, Information and Technology
(1440)
TUM School of Engineering and Design
(2250)
TUM School of Life Sciences
(889)
TUM School of Management
(262)
TUM School of Natural Sciences
(392)
TUM School of Social Sciences and Technology
(501)
Integrated Research Centers
(356)
Zentrale Einrichtungen
(441)
2022
(8728)
2021
(8936)
2020
(8204)
2019
(8872)
2018
(8670)
2017
(8689)
2016
(8835)
2015
(8223)
2014
(7150)
2013
(6756)
2012
(5775)
2011
(5563)
2010
(5427)
2009
(4595)
2008
(4109)
1989 - 2007
Elektronische Prüfungsarbeiten
Open Access Publikationen
Forschungsdaten
TUM.University Press
Sammlungen
Projekte
Einrichtungen
mediaTUM Gesamtbestand
Hochschulbibliographie
2023
Schools und Fakultäten
Zurück
Zurück zum Anfang der Trefferliste
Dauerhafter Link zum angezeigten Objekt
Titel:
Prognostic Value of Machine Learning-based Time-to-Event Analysis Using Coronary CT Angiography in Patients with Suspected Coronary Artery Disease.
Dokumenttyp:
Journal Article
Autor(en):
Bauer, Maximilian J; Nano, Nejva; Adolf, Rafael; Will, Albrecht; Hendrich, Eva; Martinoff, Stefan A; Hadamitzky, Martin
Abstract:
PURPOSE: To assess the long-term prognostic value of a machine learning (ML) approach in time-to-event analyses incorporating coronary CT angiography (CCTA)-derived and clinical parameters in patients with suspected coronary artery disease. MATERIALS AND METHODS: The retrospective analysis included patients with suspected coronary artery disease who underwent CCTA between October 2004 and December 2017. Major adverse cardiovascular events were defined as the composite of all-cause death, myocardial infarction, unstable angina, or late revascularization (>90 days after index scan). Clinical and CCTA-derived parameters were assessed as predictors of major adverse cardiovascular events and incorporated into two models: a Cox proportional hazards model with recursive feature elimination and an ML model based on random survival forests. Both models were trained and validated by employing repeated nested cross-validation. Harrell concordance index (C-index) was used to assess the predictive power. RESULTS: A total of 5457 patients (mean age, 61 years ± 11 [SD]; 3648 male patients) were evaluated. The predictive power of the ML model (C-index, 0.74; 95% CI: 0.71, 0.76) was significantly higher than the Cox model (C-index, 0.71; 95% CI: 0.68, 0.74; P = .02). The ML model also outperformed the segment stenosis score (C-index, 0.69; 95% CI: 0.66, 0.72; P < .001), which was the best performing CCTA-derived parameter, and patient age (C-index, 0.66; 95% CI: 0.63, 0.69; P < .001), the best performing clinical parameter. CONCLUSION: An ML model for time-to-event analysis based on random survival forests had higher performance in predicting major adverse cardiovascular events compared with established clinical or CCTA-derived metrics and a conventional Cox model.Keywords: Machine Learning, CT Angiography, Cardiac, Arteries, Heart, Arteriosclerosis, Coronary Artery DiseaseSupplemental material is available for this article.© RSNA, 2023.
Zeitschriftentitel:
Radiol Cardiothorac Imaging
Jahr:
2023
Band / Volume:
5
Heft / Issue:
2
Volltext / DOI:
doi:10.1148/ryct.220107
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/37124636
TUM Einrichtung:
Institut für Radiologie und Nuklearmedizin
BibTeX
Vorkommen:
mediaTUM Gesamtbestand
Einrichtungen
Schools
TUM School of Medicine and Health
Departments
Clinical Medicine
Institut für Diagnostische und Interventionelle Radiologie (Prof. Makowski)
Institut für Radiologie und Nuklearmedizin
2023
mediaTUM Gesamtbestand
Hochschulbibliographie
2023
Schools und Fakultäten
Medizin
Institut für Radiologie