Benutzer: Gast  Login
Titel:

Challenging Current Semi-supervised Anomaly Segmentation Methods for Brain MRI

Dokumenttyp:
Proceedings Paper
Autor(en):
Meissen, Felix; Kaissis, Georgios; Rueckert, Daniel
Abstract:
In this work, we tackle the problem of Semi-Supervised Anomaly Segmentation (SAS) in Magnetic Resonance Images (MRI) of the brain, which is the task of automatically identifying pathologies in brain images. Our work challenges the effectiveness of current Machine Learning (ML) approaches in this application domain by showing that thresholding Fluid-attenuated inversion recovery (FLAIR) MR scans provides better anomaly segmentation maps than several different ML-based anomaly detection models. Sp...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2022
Band / Volume:
12962
Seitenangaben Beitrag:
63-74
Volltext / DOI:
doi:10.1007/978-3-031-08999-2_5
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX