Benutzer: Gast  Login
Titel:

AutoSeg - Steering the Inductive Biases for Automatic Pathology Segmentation

Dokumenttyp:
Proceedings Paper
Autor(en):
Meissen, Felix; Kaissis, Georgios; Rueckert, Daniel
Abstract:
In medical imaging, un-, semi-, or self-supervised pathology detection is often approached with anomaly- or out-of-distribution detection methods, whose inductive biases are not intentionally directed towards detecting pathologies, and are therefore sub-optimal for this task. To tackle this problem, we propose AutoSeg, an engine that can generate diverse artificial anomalies that resemble the properties of real-world pathologies. Our method can accurately segment unseen artificial anomalies and...     »
Zeitschriftentitel:
Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
Jahr:
2022
Band / Volume:
13166
Seitenangaben Beitrag:
127-135
Volltext / DOI:
doi:10.1007/978-3-030-97281-3_19
Print-ISSN:
0302-9743
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX