Benutzer: Gast  Login
Titel:

Learning a Model-Driven Variational Network for Deformable Image Registration.

Dokumenttyp:
Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Jia, Xi; Thorley, Alexander; Chen, Wei; Qiu, Huaqi; Shen, Linlin; Styles, Iain B; Chang, Hyung Jin; Leonardis, Ales; de Marvao, Antonio; O'Regan, Declan P; Rueckert, Daniel; Duan, Jinming
Abstract:
Data-driven deep learning approaches to image registration can be less accurate than conventional iterative approaches, especially when training data is limited. To address this issue and meanwhile retain the fast inference speed of deep learning, we propose VR-Net, a novel cascaded variational network for unsupervised deformable image registration. Using a variable splitting optimization scheme, we first convert the image registration problem, established in a generic variational framework, int...     »
Zeitschriftentitel:
IEEE Trans Med Imaging
Jahr:
2022
Band / Volume:
41
Heft / Issue:
1
Seitenangaben Beitrag:
199-212
Volltext / DOI:
doi:10.1109/TMI.2021.3108881
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/34460369
Print-ISSN:
0278-0062
TUM Einrichtung:
Institut für KI und Informatik in der Medizin (Prof. Rückert)
 BibTeX