User: Guest  Login
Title:

Machine Learning Approach for Forecasting Space Weather Effects in the Ionosphere with Uncertainty Quantification

Document type:
Konferenzbeitrag
Contribution type:
Vortrag / Präsentation
Author(s):
Natras R., Soja B., Schmidt M., Dominique M., Türkmen A.
Abstract:
Space weather can cause strong sudden disturbances in the Earth’s ionosphere that can degrade the performance and reliability of Global Navigation Satellite System (GNSS) operations. To minimize such degradations, ionospheric effects need to be precisely and timely corrected by providing information of the spatially and temporally variable Total Electron Content (TEC). To obtain such corrections and early warning information of space weather events, we need to model the nonlinear space weather p...     »
Keywords:
Machine Learning, Space Weather, Ionosphere, Vertical Total Electron Content (VTEC), Forecasting, Uncertainty Quantification
Book / Congress title:
European Geosciences Union (EGU) General Assembly
Date of congress:
2022-05-23 - 2022-05-27
Year:
2022
Year / month:
2022-05
Print-ISBN:
EGU22-5408
Fulltext / DOI:
doi:https://doi.org/10.5194/egusphere-egu22-5408
WWW:
https://meetingorganizer.copernicus.org/EGU22/EGU22-5408.html
TUM Institution:
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM)
 BibTeX