Benutzer: Gast  Login
Titel:

Predicting brain age from functional connectivity in symptomatic and preclinical Alzheimer disease.

Dokumenttyp:
Article; Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
Autor(en):
Millar, Peter R; Luckett, Patrick H; Gordon, Brian A; Benzinger, Tammie L S; Schindler, Suzanne E; Fagan, Anne M; Cruchaga, Carlos; Bateman, Randall J; Allegri, Ricardo; Jucker, Mathias; Lee, Jae-Hong; Mori, Hiroshi; Salloway, Stephen P; Yakushev, Igor; Morris, John C; Ances, Beau M
Abstract:
"Brain-predicted age" quantifies apparent brain age compared to normative neuroimaging trajectories. Advanced brain-predicted age has been well established in symptomatic Alzheimer disease (AD), but is underexplored in preclinical AD. Prior brain-predicted age studies have typically used structural MRI, but resting-state functional connectivity (FC) remains underexplored. Our model predicted age from FC in 391 cognitively normal, amyloid-negative controls (ages 18-89). We applied the trained mod...     »
Zeitschriftentitel:
Neuroimage
Jahr:
2022
Band / Volume:
256
Volltext / DOI:
doi:10.1016/j.neuroimage.2022.119228
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/35452806
Print-ISSN:
1053-8119
TUM Einrichtung:
Klinik und Poliklinik für Nuklearmedizin
 BibTeX