Benutzer: Gast  Login
Titel:

Artificial intelligence for early stroke diagnosis in acute vestibular syndrome.

Dokumenttyp:
Journal Article
Autor(en):
Korda, Athanasia; Wimmer, Wilhelm; Wyss, Thomas; Michailidou, Efterpi; Zamaro, Ewa; Wagner, Franca; Caversaccio, Marco D; Mantokoudis, Georgios
Abstract:
OBJECTIVE: Measuring the Vestibular-Ocular-Reflex (VOR) gains with the video head impulse test (vHIT) allows for accurate discrimination between peripheral and central causes of acute vestibular syndrome (AVS). In this study, we sought to investigate whether the accuracy of artificial intelligence (AI) based vestibular stroke classification applied in unprocessed vHIT data is comparable to VOR gain classification. METHODS: We performed a prospective study from July 2015 until April 2020 on all p...     »
Zeitschriftentitel:
Front Neurol
Jahr:
2022
Band / Volume:
13
Volltext / DOI:
doi:10.3389/fneur.2022.919777
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36158956
Print-ISSN:
1664-2295
TUM Einrichtung:
Klinik und Poliklinik für Hals-, Nasen- und Ohrenheilkunde (Prof. Wollenberg)
 BibTeX