Advances in ultrasound system development have led to a substantial improvement of image quality and to an increased use of ultrasound in clinical practice. Nevertheless, ultrasound attenuation and shadowing artifacts cannot be entirely avoided and continue to challenge medical image computing algorithms. We introduce a method for estimating a per-pixel confidence in the information depicted by ultrasound images, referred to as an ultrasound confidence map, which emphasizes uncertainty in attenuated and/or shadow regions. Our main novelty is the modeling of the confidence estimation problem within a random walks framework by taking into account ultrasound specific constraints. The solution to the random walks equilibrium problem is global and takes the entire image content into account. As a result, our method is applicable to a variety of ultrasound image acquisition setups. We demonstrate the applicability of our confidence maps for ultrasound shadow detection, 3D freehand ultrasound reconstruction, and multi-modal image registration.
«
Advances in ultrasound system development have led to a substantial improvement of image quality and to an increased use of ultrasound in clinical practice. Nevertheless, ultrasound attenuation and shadowing artifacts cannot be entirely avoided and continue to challenge medical image computing algorithms. We introduce a method for estimating a per-pixel confidence in the information depicted by ultrasound images, referred to as an ultrasound confidence map, which emphasizes uncertainty in attenu...
»