Benutzer: Gast  Login
Titel:

Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status.

Dokumenttyp:
Article; Journal Article; Research Support, Non-U.S. Gov't
Autor(en):
Gola, Damian; Erdmann, Jeannette; Müller-Myhsok, Bertram; Schunkert, Heribert; König, Inke R
Abstract:
Coronary artery disease (CAD) is the leading global cause of mortality and has substantial heritability with a polygenic architecture. Recent approaches of risk prediction were based on polygenic risk scores (PRS) not taking possible nonlinear effects into account and restricted in that they focused on genetic loci associated with CAD, only. We benchmarked PRS, (penalized) logistic regression, naïve Bayes (NB), random forests (RF), support vector machines (SVM), and gradient boosting (GB) on a d...     »
Zeitschriftentitel:
Genet Epidemiol
Jahr:
2020
Band / Volume:
44
Heft / Issue:
2
Seitenangaben Beitrag:
125-138
Volltext / DOI:
doi:10.1002/gepi.22279
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/31922285
Print-ISSN:
0741-0395
TUM Einrichtung:
Klinik für Herz- und Kreislauferkrankungen im Erwachsenenalter (Prof. Schunkert)
 BibTeX