Benutzer: Gast  Login
Titel:

Better Safe than Sorry - Implementing Reliable Health Data Anonymization.

Dokumenttyp:
Journal Article
Autor(en):
Bild, Raffael; Kuhn, Klaus A; Prasser, Fabian
Abstract:
Modern biomedical research is increasingly data-driven. To create the required big datasets, health data needs to be shared or reused, which often leads to privacy challenges. Data anonymization is an important protection method where data is transformed such that privacy guarantees can be provided according to formal models. For applications in practice, anonymization methods need to be integrated into scalable and reliable tools. In this work, we tackle the problem of achieving reliability. Pr...     »
Zeitschriftentitel:
Stud Health Technol Inform
Jahr:
2020
Band / Volume:
270
Seitenangaben Beitrag:
68-72
Volltext / DOI:
doi:10.3233/SHTI200124
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/32570348
Print-ISSN:
0926-9630
TUM Einrichtung:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX