Benutzer: Gast  Login
Titel:

Efficient Protection of Health Data from Sensitive Attribute Disclosure.

Dokumenttyp:
Journal Article
Autor(en):
Bild, Raffael; Eicher, Johanna; Prasser, Fabian
Abstract:
Biomedical research has become data-driven. To create the required big datasets, health data needs to be shared or reused out of the context of its initial purpose. This leads to significant privacy challenges. Data anonymization is an important protection method where data is transformed such that privacy guarantees can be provided according to formal models. For applications in practice, anonymization methods need to be integrated into scalable and robust tools. In this work, we focus on the p...     »
Zeitschriftentitel:
Stud Health Technol Inform
Jahr:
2020
Band / Volume:
270
Seitenangaben Beitrag:
193-197
Volltext / DOI:
doi:10.3233/SHTI200149
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/32570373
Print-ISSN:
0926-9630
TUM Einrichtung:
Institut für Medizinische Statistik und Epidemiologie
 BibTeX