Aortic aneurysms represent a major public health burden, and currently have no medical treatment options. The pathophysiology behind these aneurysms is complex and variable, depending on location and underlying cause, and generally involves progressive dysfunction of all elements of the aortic wall. Changes in smooth muscle behavior, endothelial signaling, extracellular matrix remodeling, and to a variable extent inflammatory signaling and cells, all contribute to the dilation of the aorta, ultimately resulting in high mortality and morbidity events including dissection and rupture. A large number of researchers have identified non-coding RNAs as crucial regulators of aortic aneurysm development, both in humans and in animal models. While most work to-date has focused on microRNAs, intriguing information has also begun to emerge regarding the role of long-non-coding RNAs. This review summarizes the currently available data regarding the involvement of non-coding RNAs in aneurysmal aortopathies. Going forward, these represent key potential therapeutic targets that might be leveraged in the future to slow or prevent aortic aneurysm formation, progression and rupture.
«
Aortic aneurysms represent a major public health burden, and currently have no medical treatment options. The pathophysiology behind these aneurysms is complex and variable, depending on location and underlying cause, and generally involves progressive dysfunction of all elements of the aortic wall. Changes in smooth muscle behavior, endothelial signaling, extracellular matrix remodeling, and to a variable extent inflammatory signaling and cells, all contribute to the dilation of the aorta, ulti...
»