Benutzer: Gast  Login
Titel:

A Compressive Sensing Scheme of Frequency Sparse Signals for Mobile and Wearable Platforms

Autor(en):
da Costa Ribeiro, Stephan; Kleinsteuber, Martin; Möller, Andreas; Kranz, Matthias
Abstract:
In selected scenarios, sensor data capturing with mobile devices can be separated from the data processing step. In these cases, Compressive Sensing allows a significant reduction of the average sampling rate below the Nyquist rate, if the signal has a sparse frequency representation. This can be motivated in order to increase the energy efficiency of the mobile device and extend its runtime. Since many signals, especially in the field of motion recognition, are time-dependent, we propose a corr...     »
Seitenangaben Beitrag:
510-518
Herausgeber:
Moreno-D'iaz, Roberto; Pichler, Franz; Quesada-Arencibia, Alexis
Buchtitel:
Computer Aided Systems Theory -- EUROCAST 2011
Band / Teilband / Volume:
6928
Verlag / Institution:
Springer Berlin / Heidelberg
Jahr:
2012
Serientitel:
Lecture Notes in Computer Science
DOI:
doi:http://dx.doi.org/10.1007/978-3-642-27579-1_66
 BibTeX