The fundamental issues in Augmented Reality (AR) are on how to naturally mediate the reality with virtual content as seen by users. In AR applications with Optical See-Through Head-Mounted Displays (OST-HMD), the issues often raise the problem of rendering color on the OST-HMD consistently to input colors. However, due to various display constraints and eye properties, it is still a challenging task to indistinguishably reproduce the colors on OST-HMDs. An approach to solve this problem is to pre-process the input color so that a user perceives the output color on the display to be the same as the input. We propose a color calibration method for OST-HMDs. We start from modeling the physical optics in the rendering and perception process between the HMD and the eye. We treat the color distortion as a semi-parametric model which separates the non-linear color distortion and the linear color shift. We demonstrate that calibrated images regain their original appearance on two OST-HMD setups with both synthetic and real datasets. Furthermore, we analyze the limitations of the proposed method and remaining problems of the color reproduction in OST-HMDs. We then discuss how to realize more practical color reproduction methods for future HMD-eye system.
«
The fundamental issues in Augmented Reality (AR) are on how to naturally mediate the reality with virtual content as seen by users. In AR applications with Optical See-Through Head-Mounted Displays (OST-HMD), the issues often raise the problem of rendering color on the OST-HMD consistently to input colors. However, due to various display constraints and eye properties, it is still a challenging task to indistinguishably reproduce the colors on OST-HMDs. An approach to solve this problem is to pr...
»