Benutzer: Gast  Login
Titel:

Classifying snapshots of the doped Hubbard model with machine learning

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Bohrdt, Annabelle; Chiu, Christie S.; Ji, Geoffrey; Xu, Muqing; Greif, Daniel; Greiner, Markus; Demler, Eugene; Grusdt, Fabian; Knap, Michael
Abstract:
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyse and classify such snapshots of ultracold atoms. Specifically, we compare the data from an experimental realization of the two-dimensional Fermi–Hubbard model to two theoretical approaches: a doped quantum spin liquid state of resonating valence bond type1,2, and the geometric string theory3,4, describing a state with hidden spin order...     »
Zeitschriftentitel:
Nature Physics 2019-07
Jahr:
2019
Band / Volume:
15
Heft / Issue:
9
Seitenangaben Beitrag:
921-924
Volltext / DOI:
doi:10.1038/s41567-019-0565-x
Verlag / Institution:
Springer Science and Business Media LLC
E-ISSN:
1745-24731745-2481
Publikationsdatum:
01.07.2019
 BibTeX