Grigo, Constantin;Koutsourelakis, Phaedon-SteliosA physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regimeJournal of Computational Physics2019397108842
Grigo, Constantin;Koutsourelakis, Phaedon-SteliosA physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regimeJournal of Computational Physics2019
Zhu, Yinhao;Zabaras, Nicholas;Koutsourelakis, Phaedon-Stelios;Perdikaris, ParisPhysics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled dataJournal of Computational Physics2019
Biehler, Jonas;Mäck, Markus;Nitzler, Jonas;Hanss, Michael;Koutsourelakis, Phaedon‐Stelios;Wall, Wolfgang A.Multifidelity approaches for uncertainty quantificationGAMM-Mitteilungen2019e201900008
Grigo, Constantin;Koutsourelakis, Phaedon-SteliosBayesian Model and Dimension Reduction for Uncertainty Propagation: Applications in Random MediaSIAM/ASA Journal on Uncertainty Quantification201971292-323
Felsberger, Lukas;Koutsourelakis, Phaedon-SteliosPhysics-Constrained, Data-Driven Discovery of Coarse-Grained DynamicsCommunications in Computational Physics2019255
Schöberl, Markus;Zabaras, Nicholas;Koutsourelakis, Phaedon-SteliosPredictive collective variable discovery with deep Bayesian modelsThe Journal of Chemical Physics20191502024109