Benutzer: Gast  Login
Titel:

DeceptionNet: Network-Driven Domain Randomization

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zakharov, S.; Kehl, W.; Ilic, S.
Abstract:
We present a novel approach to tackle domain adaptation between synthetic and real data. Instead of employing 'blind' domain randomization, i.e. augmenting synthetic renderings with random backgrounds or changing illumination and colorization, we leverage the task network as its own adversarial guide towards useful augmentations that maximize the uncertainty of the output. To this end, we design a min-max optimization scheme where a given task competes against a special deception network, with t...     »
Stichworte:
ICCV,ICCV2019,CAMP,CAMPComputerVision,ComputerVision,DomainRandomization,DomainAdaptation
Zeitschriftentitel:
International Conference on Computer Vision (ICCV)
Jahr:
2019
 BibTeX