Benutzer: Gast  Login
Titel:

DPOD: 6D Pose Object Detector and Refiner

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Zakharov, S.; Shugurov, I.; Ilic, S.
Abstract:
In this paper we present a novel deep learning method for 3D object detection and 6D pose estimation from RGB images. Our method, named DPOD (Dense Pose Object Detector), estimates dense multi-class 2D-3D correspondence maps between an input image and available 3D models. Given the correspondences, a 6DoF pose is computed via PnP and RANSAC. An additional RGB pose refinement of the initial pose estimates is performed using a custom deep learning based refinement scheme. Our results and compariso...     »
Stichworte:
ICCV,ICCV2019,CAMP,CAMPComputerVision,ComputerVision,ObjectDetection,6DPoseEstimation
Zeitschriftentitel:
International Conference on Computer Vision (ICCV)
Jahr:
2019
Hinweise:
Open attachment browser
 BibTeX