Benutzer: Gast  Login
Titel:

Supervised learning mixing characteristics of film cooling in a rocket combustor using convolutional neural networks

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Ma, Hao; Zhang, Yu-xuan; Haidn, Oskar J.; Thuerey, Nils; Hu, Xiang-yu
Abstract:
Machine learning approach has been applied previously to physical problem such as complex fluid flows. This paper presents a method of using convolutional neural networks to directly predict the mixing characteristics between coolant film and combusted gas in a rocket combustion chamber. Based on a reference experiment, numerical solutions are obtained from Reynolds-Averaged Navier–Stokes simulation campaign and then interpolated into the rectangular target grids. A U-net architecture is modifie...     »
Stichworte:
Combustion chamber; Convolutional neural network; Deep learning; Film cooling; Flow-field prediction
Dewey Dezimalklassifikation:
620 Ingenieurwissenschaften
Zeitschriftentitel:
Acta Astronautica
Jahr:
2020
Band / Volume:
175
Seitenangaben Beitrag:
11-18
Nachgewiesen in:
Scopus
Sprache:
en
Volltext / DOI:
doi:10.1016/j.actaastro.2020.05.021
Verlag / Institution:
Elsevier BV
E-ISSN:
0094-5765
Eingereicht (bei Zeitschrift):
08.12.2019
Angenommen (von Zeitschrift):
08.05.2020
Publikationsdatum:
01.10.2020
TUM Einrichtung:
Lehrstuhl für Aerodynamik und Strömungsmechanik
 BibTeX