We formulate four novel context-aware algorithms based on model hierarchies aimed to enable an efficient quantification of uncertainty in complex, computationally expensive problems, such as fluid-structure interaction and plasma microinstability simulations. Our results show that our algorithms are more efficient than standard approaches and that they are able to cope with the challenges of quantifying uncertainty in higher-dimensional, complex problems.
Übersetzte Kurzfassung:
Wir formulieren vier kontextsensitive Algorithmen auf der Grundlage von Modellhierarchien um eine effiziente Quantifizierung der Unsicherheit bei komplexen, rechenintensiven Problemen zu ermöglichen, wie Fluid-Struktur-Wechselwirkungs- und Plasma-Mikroinstabilitätssimulationen. Unsere Ergebnisse zeigen, dass unsere Algorithmen effizienter als Standardansätze sind und die Herausforderungen der Quantifizierung der Unsicherheit in höherdimensionalen, komplexen Problemen bewältigen können.