Benutzer: Gast  Login
Sortieren nach:
und:
Mehr ...

Ankerst, Donna P.;Goros, Martin;Tomlins, Scott A.;Patil, Dattatraya;Feng, Ziding;Wei, John T.;Sanda, Martin G.;Gelfond, Jonathan;Thompson, Ian M.;Leach, Robin J.;Liss, Michael A.
Incorporation of Urinary Prostate Cancer Antigen 3 and TMPRSS2:ERG into Prostate Cancer Prevention Trial Risk Calculator
European Urology Focus
2019
5
1
54-61

Mehr ...

Kaissis, Georgios A.;Lohöfer, Fabian K.;Ziegelmayer, Sebastian;Danner, Julia;Jäger, Carsten;Schirren, Rebekka;Ankerst, Donna;Ceyhan, Güralp O.;Friess, Helmut;Rummeny, Ernst J.;Weichert, Wilko;Braren, Rickmer F.
Borderline-resectable pancreatic adenocarcinoma: Contour irregularity of the venous confluence in pre-operative computed tomography predicts histopathological infiltration
PLOS ONE
2019
14
1
e0208717

Mehr ...

Hoffmann, D;Thurner, S;Ankerst, D;Damme, K;Windisch, W;Brugger, D
Chickens’ growth performance and pancreas development exposed to soy cake varying in trypsin inhibitor activity, heat-degraded lysine concentration, and protein solubility in potassium hydroxide
Poultry Science
2019
98
6
2489-2499

Mehr ...

Krautenbacher, Norbert;Flach, Nicolai;Böck, Andreas;Laubhahn, Kristina;Laimighofer, Michael;Theis, Fabian J.;Ankerst, Donna P.;Fuchs, Christiane;Schaub, Bianca
A strategy for high‐dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors
Allergy
2019

Mehr ...

Tolksdorf, Johanna;Kattan, Michael W.;Boorjian, Stephen A.;Freedland, Stephen J.;Saba, Karim;Poyet, Cedric;Guerrios, Lourdes;De Hoedt, Amanda;Liss, Michael A.;Leach, Robin J.;Hernandez, Javier;Vertosick, Emily;Vickers, Andrew J.;Ankerst, Donna P.
Multi-cohort modeling strategies for scalable globally accessible prostate cancer risk tools
BMC Medical Research Methodology
2019
19
1

Mehr ...

Kaissis, Georgios;Ziegelmayer, Sebastian;Lohöfer, Fabian;Algül, Hana;Eiber, Matthias;Weichert, Wilko;Schmid, Roland;Friess, Helmut;Rummeny, Ernst;Ankerst, Donna;Siveke, Jens;Braren, Rickmer
A machine learning model for the prediction of survival and tumor subtype in pancreatic ductal adenocarcinoma from preoperative diffusion-weighted imaging
European Radiology Experimental
2019
3
1