In this work we present a novel driving technique for thermoacoustic (TA) loudspeakers. The proposed technique allows linearizing the pressure response of TA loudspeakers while reducing the average power dissipation on the device, and thus its working temperature. This is achieved exploiting an adaptive predistortion algorithm, implemented through digital signal processing. The controlled TA loudspeakers show exceptionally low values of total harmonic distortion and intermodulation distortion in their pressure response, exceeding the performance of previously proposed techniques, and a significantly reduced working temperature.
«
In this work we present a novel driving technique for thermoacoustic (TA) loudspeakers. The proposed technique allows linearizing the pressure response of TA loudspeakers while reducing the average power dissipation on the device, and thus its working temperature. This is achieved exploiting an adaptive predistortion algorithm, implemented through digital signal processing. The controlled TA loudspeakers show exceptionally low values of total harmonic distortion and intermodulation distortion in...
»