User: Guest  Login
Title:

Sparse identification of truncation errors

Document type:
Zeitschriftenaufsatz
Author(s):
Thaler, Stephan; Paehler, Ludger; Adams, Nikolaus A.
Abstract:
This work presents a data-driven approach to the identification of spatial and temporal truncation errors for linear and nonlinear discretization schemes of Partial Differential Equations (PDEs). Motivated by the central role of truncation errors, for example in the creation of implicit Large Eddy schemes, we introduce the Sparse Identification of Truncation Errors (SITE) framework to automatically identify the terms of the modified differential equation from simulation data. We build on recent...     »
Keywords:
Data-driven scientific computing; Modified differential equation analysis; Preconditioning; Sparse regression; Truncation error
Dewey Decimal Classification:
620 Ingenieurwissenschaften
Journal title:
Journal of Computational Physics
Year:
2019
Journal volume:
397
Covered by:
Scopus
Fulltext / DOI:
doi:10.1016/j.jcp.2019.07.049
WWW:
https://www.sciencedirect.com/science/article/pii/S0021999119305352
Publisher:
Elsevier BV
E-ISSN:
0021-9991
Submitted:
03.04.2019
Accepted:
20.07.2019
Date of publication:
29.07.2019
 BibTeX