Benutzer: Gast  Login
Titel:

Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Um, Terry T.; Pfister, Franz M. J.; Pichler, Daniel; Endo, Satoshi; Lang, Muriel; Hirche, Sandra; Fietzek, Urban; Kulić, Dana
Abstract:
While convolutional neural networks (CNNs) have been successfully applied to many challenging classification applications, they typically require large datasets for training. When the availability of labeled data is limited, data augmentation is a critical preprocessing step for CNNs. However, data augmentation for wearable sensor data has not been deeply investigated yet. In this paper, various data augmentation methods for wearable sensor data are proposed. The proposed methods and CNNs...     »
Kongress- / Buchtitel:
Proceedings of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017
Verlag / Institution:
ACM Press
Publikationsdatum:
01.01.2017
Jahr:
2017
Print-ISBN:
9781450355438
Volltext / DOI:
doi:10.1145/3136755.3136817
CC-Lizenz:
by, http://creativecommons.org/licenses/by/4.0
 BibTeX