User: Guest  Login
Original title:
Disentangling Tissue Microstructure with Magnetic Resonance Imaging
Translated title:
Entwirren Gewebe Mikrostruktur mit Magnetresonanztomographie
Author:
Molina Romero, Miguel
Year:
2018
Document type:
Dissertation
Faculty/School:
Fakultät für Informatik
Advisor:
Menze, Bjoern H. (Prof. Dr.)
Referee:
Menze, Bjoern H. (Prof. Dr.); Menzel, Marion I. (Priv.-Doz. Dr.)
Language:
en
Subject group:
DAT Datenverarbeitung, Informatik; MED Medizin; PHY Physik
TUM classification:
PHY 820d; MED 370d
Abstract:
This thesis takes MRI a step further to study brain tissue microstructure. The dMRI signal is reformulated in a Blind Source Separation framework, enabling the disentanglement of sub-voxel tissue signal components, and the estimation of multiple tissue parameters. Furthermore, a deep learning model is introduced, tackling the partial volume contamination caused by Cerebrospinal Fluid in dMRI. Finally, Quantitative Transient-state Imaging, an ultra-fast acquisition and reconstruction scheme for m...     »
Translated abstract:
Diese Arbeit führt die MRT einen Schritt weiter, um die Mikrostruktur des Hirngewebes zu untersuchen. Das dMRI-Signal wird in einem Blind-Source-Separation-Framework umformuliert, das die Entflechtung von Sub-Voxel-Gewebe-Signalkomponenten und die Schätzung mehrerer Gewebeparameter ermöglicht. Darüber hinaus wird ein Deep-Learning-Modell eingeführt, das die partielle Volumenkontamination von Liquor in dMRI in Angriff nimmt. Schließlich wird die quantitative transitorische Bildgebung, ein ultrasc...     »
WWW:
https://mediatum.ub.tum.de/?id=1436038
Date of submission:
29.03.2018
Oral examination:
27.09.2018
File size:
19938789 bytes
Pages:
190
Urn (citeable URL):
https://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180927-1436038-1-1
Last change:
12.12.2018
 BibTeX