Today finite element simulations for draping are based on anisotropic continuum mechanical models. Effects like fiber
separation, fiber sliding and Poisson’s ratio greater than 0.5 are not describable with such an approach. The work presents a new finite element formulation for plain woven fabric involving an internal unit cell. The unit cell is a finite element model based on beams. This beam model represents the kinematics and the interactions of the rovings of the real fabric. This approach offers possibilities to overcome the limitations of models based on a continuum. The new finite element formulation is implemented in the user environment of the industrial explicit FE software PAM-COMPOSITES from the ESI group.
«
Today finite element simulations for draping are based on anisotropic continuum mechanical models. Effects like fiber
separation, fiber sliding and Poisson’s ratio greater than 0.5 are not describable with such an approach. The work presents a new finite element formulation for plain woven fabric involving an internal unit cell. The unit cell is a finite element model based on beams. This beam model represents the kinematics and the interactions of the rovings of the real fabric. This approach...
»