OBJECTIVE: Neuropsychologic disorders are common after coronary artery bypass operations. Air microbubbles are identified as a contributing factor. A dynamic bubble trap might reduce the number of gaseous microemboli. METHODS: A total of 50 patients undergoing coronary artery bypass operation were recruited for this study. In 26 patients a dynamic bubble trap was placed between the arterial filter and the aortic cannula (group 1), and in 24 patients a placebo dynamic bubble trap was used (group 2). The number of high-intensity transient signals within the proximal middle cerebral artery was continuously measured on both sides during bypass, which was separated into 4 periods: phase 1, start of bypass until aortic clamping; phase 2, aortic clamping until rewarming; phase 3, rewarming until clamp removal; and phase 4, clamp removal until end of bypass. S100 beta values were measured before, immediately after, and 6 and 48 hours after the operation and before hospital discharge. RESULTS: The bubble elimination rate during bypass was 77% in group 1 and 28% in group 2 (P <.0001). The number of high-intensity signals was lower in group 1 during phase 1 (5.8 +/- 7.3 vs 16 +/- 15.4, P <.05 vs group 2) and phase 2 (6.9 +/- 7.3 vs 24.2 +/- 27.3, P <.05 vs group 2) but not during phases 3 and 4. Serum S100 beta values were equally increased in both groups immediately after the operation. Group 2 patients had higher S100 beta values 6 hours after the operation and significantly higher S100 beta values 48 hours after the operation (0.06 +/- 0.14 vs 0.18 +/- 0.24, P =.0133 vs group 2). Age and S100 beta values were correlated in group 2 but not in group 1. CONCLUSION: Gaseous microemboli can be removed with a dynamic bubble trap. Subclinical cerebral injury detectable by increases of S100 beta disappears earlier after surgical intervention.