Quantifying Drivers of Forecasted Returns Using Approximate Dynamic Factor Models for Mixed-Frequency Panel Data
Document type:
Zeitschriftenaufsatz
Author(s):
Defend, M.; Min, A.; Portelli, L.; Ramsauer, F.; Sandrini, F. & Zagst, R.
Non-TUM Co-author(s):
ja
Cooperation:
international
Abstract:
This article considers the estimation of Approximate Dynamic Factor Models with homoscedastic, cross-sectionally correlated errors for incomplete panel data. In contrast to existing estimation approaches, the presented estimation method comprises two expectation-maximization algorithms and uses conditional factor moments in closed form. To determine the unknown factor dimension and autoregressive order, we propose a two-step information-based model selection criterion. The performance of our estimation procedure and the model selection criterion is investigated within a Monte Carlo study. Finally, we apply the Approximate Dynamic Factor Model to real-economy vintage data to support investment decisions and risk management. For this purpose, an autoregressive model with the estimated factor span of the mixed-frequency data as exogenous variables maps the behavior of weekly S&P500 log-returns. We detect the main drivers of the index development and define two dynamic trading strategies resulting from prediction intervals for the subsequent returns.