Benutzer: Gast  Login
Titel:

Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning.

Dokumenttyp:
Journal Article
Autor(en):
Saldanha, Oliver Lester; Muti, Hannah Sophie; Grabsch, Heike I; Langer, Rupert; Dislich, Bastian; Kohlruss, Meike; Keller, Gisela; van Treeck, Marko; Hewitt, Katherine Jane; Kolbinger, Fiona R; Veldhuizen, Gregory Patrick; Boor, Peter; Foersch, Sebastian; Truhn, Daniel; Kather, Jakob Nikolas
Abstract:
BACKGROUND: Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS: Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Vir...     »
Zeitschriftentitel:
Gastric Cancer
Jahr:
2023
Band / Volume:
26
Heft / Issue:
2
Seitenangaben Beitrag:
264-274
Volltext / DOI:
doi:10.1007/s10120-022-01347-0
PubMed:
http://view.ncbi.nlm.nih.gov/pubmed/36264524
Print-ISSN:
1436-3291
TUM Einrichtung:
1580; 1622; 1708; Institut für Allgemeine Pathologie und Pathologische Anatomie (Dr. Mogler komm.)
 BibTeX