Benutzer: Gast  Login
Titel:

DScribe: Library of descriptors for machine learning in materials science

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Himanen, Lauri; Jäger, Marc O.J.; Morooka, Eiaki V.; Federici Canova, Filippo; Ranawat, Yashasvi S.; Gao, David Z.; Rinke, Patrick; Foster, Adam S.
Abstract:
DScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Ov...     »
Zeitschriftentitel:
Computer Physics Communications 2020-02
Jahr:
2020
Band / Volume:
247
Seitenangaben Beitrag:
106949
Volltext / DOI:
doi:10.1016/j.cpc.2019.106949
Verlag / Institution:
Elsevier BV
E-ISSN:
0010-4655
Publikationsdatum:
01.02.2020
 BibTeX