In this paper, a new hybrid graphics-processing-unit (GPU)-based real-time synthetic aperture radar (SAR) simulation system is presented. Previous real-time SAR simulators only supported single-bounce simulation in real time. The new hybrid system uses the rasterization approach for real-time single-bounce simulation and a new image-based GPU ray-tracing approach for monostatic SAR double-bounce simulation. This approach provides fast simulation results even while simulating complex and extended scenes. The simulation results are compared to a high-resolution airborne SAR image, and the limitations of the approach are discussed.
«
In this paper, a new hybrid graphics-processing-unit (GPU)-based real-time synthetic aperture radar (SAR) simulation system is presented. Previous real-time SAR simulators only supported single-bounce simulation in real time. The new hybrid system uses the rasterization approach for real-time single-bounce simulation and a new image-based GPU ray-tracing approach for monostatic SAR double-bounce simulation. This approach provides fast simulation results even while simulating complex and extended...
»