Benutzer: Gast  Login
Titel:

Machine-Learning Models on the Edge to reduce Data Volume in Wide-Area Networks between various Production Sites

Dokumenttyp:
Konferenzbeitrag
Autor(en):
Weiß, Iris; Vogel-Heuser, Birgit; Holstein, Patrick; Trunzer, Emanuel
Abstract:
The availability of vast amounts of data in automated production systems reveals the potential for data-driven improvements. Jointly using this data across different sites or even across different companies will further increase the validity of data-driven models. However, the throughput in wide area networks is limited, limiting the large-scale transmission of data. Therefore, this paper proposes a data reduction approach to reduce network load based on regression and time series models directl...     »
Kongress- / Buchtitel:
46th Annual Conference on the IEEE Industrial Electronics Society (IECON)
Verlagsort:
Singapore, Singapore
Jahr:
2020
Seiten:
3831-3835
Nachgewiesen in:
Scopus; Web of Science
Volltext / DOI:
doi: 10.1109/IECON43393.2020.9254984
 BibTeX