Benutzer: Gast  Login
Dokumenttyp:
Masterarbeit
Autor(en):
Che, Lin
Titel:
Sentiment-based spatialtemporal event detection in social media data
Abstract:
The emergence of social media provides a new source of sensing society. In this thesis, a novel event detection method for detecting real-world events based on population sentiment orientation (PSO) from social media check-in data is proposed. The method is mainly composed of sentiment analysis, spatial-temporal analysis, and event extraction. The hypothesis guiding this research is that social events change PSO in the dimension of time and space. The ratio of the number of positive and negativ...     »
Stichworte:
Spatial-temporal analysis, Event detection, Social media, Sentiment analysis, Machine learning, Data mining
Fachgebiet:
GEO Geowissenschaften
DDC:
620 Ingenieurwissenschaften
Betreuer:
M.Sc. Juliane Cron, Ruoxin Zhu, TU München
Gutachter:
Dr.-Ing. Eva Hauthal TU Dresden
Jahr:
2019
Quartal:
3. Quartal
Jahr / Monat:
2019-09
Monat:
Sep
Seiten/Umfang:
83
Sprache:
en
Hochschule / Universität:
Technische Universität München
TUM Einrichtung:
Lehrstuhl für Kartographie
Bearbeitungsende:
11.09.2019
 BibTeX