Benutzer: Gast  Login
Titel:

Combining active and semisupervised learning of remote sensing data within a Renyi entropy regularization framework

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Polewski, Przemyslaw; Yao, Wei; Heurich, Marco; Krzystek, Peter; Stilla, Uwe
Abstract:
Active and semisupervised learning are related techniques aiming at reducing the effort of creating training sets for classification and regression tasks. In this work, we present a framework for combining these two techniques on the basis of Renyi entropy regularization, enabling a synergy effect. We build upon the existing semisupervised learning model which attempts to balance the likelihood of labeled examples and the entropy of putative object probabilities within the unlabeled pool. To ena...     »
Stichworte:
Entropy, Semisupervised learning, Remote sensing, Training, Erbium, Labeling, Vegetation
Zeitschriftentitel:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Jahr:
2016
Band / Volume:
9
Heft / Issue:
7
Seitenangaben Beitrag:
2910--2922
Volltext / DOI:
doi:10.1109/JSTARS.2015.2510867
WWW:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7378854
Verlag / Institution:
IEEE
 BibTeX