Benutzer: Gast  Login
Titel:

Deep neural networks for above-ground detection in very high spatial resolution digital elevation models

Dokumenttyp:
Zeitschriftenaufsatz
Autor(en):
Marmanis, Dimitrios; Adam, F; Datcu, Mihai; Esch, Thomas; Stilla, Uwe
Abstract:
Deep Learning techniques have lately received increased attention for achieving state-of-the-art results in many classification problems, including various vision tasks. In this work, we implement a Deep Learning technique for classifying above-ground objects within urban environments by using a Multilayer Perceptron model and VHSR DEM data. In this context, we propose a novel method called M-ramp which significantly improves the classifier’s estimations by neglecting artefacts, minimizing conve...     »
Stichworte:
Deep Learning, Multilayer Perceptrons, Ground Filtering, DEM, Classification
Zeitschriftentitel:
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Jahr:
2015
Band / Volume:
2
Heft / Issue:
3
Seitenangaben Beitrag:
103
Volltext / DOI:
doi:10.5194/isprsannals-II-3-W4-103-2015
WWW:
https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-3-W4/103/2015/isprsannals-II-3-W4-103-2015.pdf
Verlag / Institution:
Copernicus GmbH
 BibTeX