NF-kappaB (Rel) transcription factors control physiological and pathological immune cell function. The scaffold proteins Bcl-10 and MALT1 couple antigen-receptor signals to the canonical NF-kappaB pathway and are pivotal in lymphomagenesis. Here we found that Bcl-10 and MALT1 differentially regulated B cell receptor-induced activation of RelA and c-Rel. Bcl-10 was essential for recruitment of the kinase IKK into lipid rafts for the activation of RelA and c-Rel, for blocking apoptosis and for inducing division after B cell receptor ligation. In contrast, MALT1 participated in survival signaling but was not involved in IKK recruitment or activation and was dispensable for RelA induction and proliferation. MALT1 selectively activated c-Rel to control a distinct subprogram. Our results provide mechanistic insights into B cell receptor-induced survival and proliferation signals and demonstrate the selective control of c-Rel in the canonical NF-kappaB pathway.
«NF-kappaB (Rel) transcription factors control physiological and pathological immune cell function. The scaffold proteins Bcl-10 and MALT1 couple antigen-receptor signals to the canonical NF-kappaB pathway and are pivotal in lymphomagenesis. Here we found that Bcl-10 and MALT1 differentially regulated B cell receptor-induced activation of RelA and c-Rel. Bcl-10 was essential for recruitment of the kinase IKK into lipid rafts for the activation of RelA and c-Rel, for blocking apoptosis and for ind...
»